

DAA-003-001505

Third Year B. Sc. (Sem. V) (CBCS) Examination April / May - 2015

C-501: Inorganic & Industrial Chemistry

Faculty Code : 003 Subject Code : 001505

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All the questions are compulsory.

- (2) Answer of Q.1 (M.C.Q) should be written in the main answer book.
- 1 Answer the following:
 - (1) In the multiplication of two operators, operation should be
 - (A) Right of left
 - (B) Left to right
 - (C) Any
 - (D) None
 - (2) Zero point energy for particle moving in three dimensional box is shown as

(A)
$$\frac{n^2h^2}{8ma^2}$$

(B)
$$\frac{3h^2}{8ma^2}$$

(C)
$$\frac{h^2}{8ma^2}$$

(D) None

20

(3)	Particle in one dimensional box suggests that atomic spectr	
	are spectra.	
	(A) Sharp	
	(B) Broad	
	(C) Line	
	(D) None	
(4)	Generally electron shows motions in atom.	
	(A) Rotational	
	(B) Vibrational	
	(C) Translational	
	(D) All	
(5)	An energy state having more than one wave functions for	
	the same value of energy is called	
	(A) Degenerated	
	(B) Generated	
	(C) Regenerated	
	(D) None	
(6)	explained magnetic properties of complexes using	
	crystal field theory.	
	(A) Bethe	
	(B) van Vleck	
	(C) Hitler	
	(D) London	

DAA-003	-0015	505] 3	[Contd
	(D)	None	
	(C)	Syneric effect	
	(B)	Synergic effect	
	(A)	Energy effect	
(10)		metal carbonyls, when σ bond formation strenoond formation and vice versa, is called	gthens
(10)	` ′	Unpredicted	41
	(C)	Both	
		$ m t_{2g}$	
	(A)		
(9)		ape and symmetry of orbital is not equ	ıal
		All	
		I.R.	
		X-rays	
(8)	Fe_3	$(CO)_{12}$ can be studied by	
	(D)	Polarisation energy	
	(C)	Pairing energy	
	(B)	Zero point energy	
	(A)	Potential energy	
(7)	P sy	ymbol in crystal field theory is related to -	

[Contd...

(11)	Which elements are useful as primary nutrients for plants?				
	(A)	С, Н, О			
	(B)	Ca, Mg, Zn			
	(C)	N, P, K			
	(D)	B, S, Cl			
(12)	Formula of murate of potash is				
	(A)	$\mathrm{K}_{2}\mathrm{SO}_{4}$			
	(B)	${ m K_2CO_3}$			
	(C)	KNO_3			
	(D)	KCl			
(13)	C_2S	code means			
	(A)	Dicalcium Silicate			
	(B)	Calcium disilicate			
	(C)	Calcium disulphide			
	(D)	Carbon disulphide			
(14)		is main raw material for cement manufacturing.			
	(A)	${f MgCO}_3$			
	(B)	${ m CaCO}_3$			
	(C)	$\mathrm{Na_{2}CO_{3}}$			
	(D)	$Al_2 (CO_3)_3$			
(15)	Who	discovered portland cement?			
	(A)	Joseph Lister			
	(B)	Joseph Warner			
	(C)	Joseph Aspedine			
	(D)	Joseph Alexine			

(16)		is not present in white cement.		
	(A)	Na		
	(B)	Ca		
	(C)	Al		
	(D)	Fe		
(17)	7) Formula of synthetic gas is			
	(A)	$CO + H_2$		
	(B)	$CO_2 + H_2$		
	(C)	$CO + N_2$		
	(D)	$CO + S_2$		
(18)		is present in fire extinguisher.		
	(A)	CHCl_3		
	(B)	CCl_4		
	(C)	$\mathrm{CH_{3}Cl}$		
	(D)	$\mathrm{CH_{2}Cl_{2}}$		
(19)		$_$ is example of C_1 petrochemical.		
	(A)	Ethylene		
	(B)	·		
	(C)	Methanol		
	(D)	None		
(20)		is obtained as by product during the ethanol		
	•	chesis.		
	(A)	Ethylmethyl ether		
	(B)	Ethoxy ether		
	(C)	·		
	(D)	Diethyl ether		

2 (a) Answer following: (any three)

6

- (i) Explain addition of operator
- (ii) Normalise; $\psi = A \sin \frac{n\pi}{a} \cdot x \ 0 \le x \le a$
- (iii) Explain weak ligand field and strong ligand field.
- (iv) Give the conditions to be obeyed by electron for orbital rotation in compound.
- (v) Mention the physical properties of metal carbonyls.
- (vi) Explain terminal CO group and doubly bringing CO group.
- (b) Answer following: (any three)

9

- (i) Calculate the lowest energy for particle moving in one dimensional box.
- (ii) Write about Hamiltonian operator.
- (iii) Explain the structure of Ni (CO)₄
- (iv) Enlist the factors affecting the splitting energy.
- (v) Write short note: Metal nitrosyl compounds.
- (vi) How magnetic momentum is useful to determine the structure of ML_4 type complexes ?
- (c) Answer the following: (any two)

10

- (i) Discuss I.R. spectroscopy and metal carbonyls.
- (ii) Discuss in detail particle moving in three dimensional box.
- (iii) Give the Schrodinger equation in polar coordinates and derive R, θ , ϕ equation with variable separation.
- (iv) Explain the Crystal Field Theory.
- (v) Compare the splitting of d-orbitals in octahedral and tetrahedral fields.

3 (a) Answer the following: (any three)

- 6
- (i) Enlist the raw material used in cement manufacturing.
- (ii) What is concrete and mortar?
- (iii) Explain the importance of minor nutrients for plants.
- (iv) Give the classification of fertilizers with example.
- (v) Give the use of chloromethane.
- (vi) Enlist the chemicals obtained as C_3 chemicals from petroleum.
- (b) Answer the following: (any three)

9

- (i) Explain the setting of cement
- (ii) Explain ISI specification of cement.
- (iii) Give essential properties of fertilizers.
- (iv) Write short note NPK fertilizers.
- (v) Explain petrochemicals and chemical composition of petroleum.
- (vi) Give the synthesis of ethylene glycol.
- (c) Answer the following: (any two)

10

- (i) Discuss the manufacturing of portland cement by dry process.
- (ii) Discuss the properties of cement
- (iii) Discuss the synthesis of ethanol by sulphuric acid method.
- (iv) What are C_1 chemicals ? Give the preparation of synthetic gas.
- (v) Discuss the manufacturing of urea and superphosphate.